几何IV

所属分类:数学  
出版时间:2009-1   出版时间:科学   作者:列舍特尼亚克   页数:250  
Tag标签:Mathematics  

前言

  要使我国的数学事业更好地发展起来,需要数学家淡泊名利并付出更艰苦地努力。另一方面,我们也要从客观上为数学家创造更有利的发展数学事业的外部环境,这主要是加强对数学事业的支持与投资力度,使数学家有较好的工作与生活条件,其中也包括改善与加强数学的出版工作。  从出版方面来讲,除了较好较快地出版我们自己的成果外,引进国外的先进出版物无疑也是十分重要与必不可少的。从数学来说,施普林格(springer)出版社至今仍然是世界上最具权威的出版社。科学出版社影印一批他们出版的好的新书,使我国广大数学家能以较低的价格购买,特别是在边远地区工作的数学家能普遍见到这些书,无疑是对推动我国数学的科研与教学十分有益的事。  这次科学出版社购买了版权,一次影印了23本施普林格出版社出版的数学书,就是一件好事,也是值得继续做下去的事情。大体上分一下,这23本书中,包括基础数学书5本,应用数学书6本与计算数学书12本,其中有些书也具有交叉性质。这些书都是很新的,2000年以后出版的占绝大部分,共计16本,其余的也是1990年以后出版的。这些书可以使读者较快地了解数学某方面的前沿,例如基础数学中的数论、代数与拓扑三本,都是由该领域大数学家编著的“数学百科全书”的分册。对从事这方面研究的数学家了解该领域的前沿与全貌很有帮助。按照学科的特点,基础数学类的书以“经典”为主,应用和计算数学类的书以“前沿”为主。这些书的作者多数是国际知名的大数学家,例如《拓扑学》一书的作者诺维科夫是俄罗斯科学院的院士,曾获“菲尔兹奖”和“沃尔夫数学奖”。这些大数学家的著作无疑将会对我国的科研人员起到非常好的指导作用。  当然,23本书只能涵盖数学的一部分,所以,这项工作还应该继续做下去。更进一步,有些读者面较广的好书还应该翻译成中文出版,使之有更大的读者群。  总之,我对科学出版社影印施普林格出版社的部分数学著作这一举措表示热烈的支持,并盼望这一工作取得更大的成绩。

内容概要

This volume of the Encyclopaedia contains two articles which give a survey of modern research into non-regular Riemannian geometry,carried out mostly by Russian mathematicians.  The first article written by Reshetnyak is devoted to the theory of two—dimensional Riemannian manifolds of bounded curvature.Concepts of Riemannian geometry such as the area and integral curvature of a set and the length and integral curvature of a curve are also defined for these manifolds.Some fundamental results of Riemannian geometry like the Gauss.Bonnet formula are true in the more general case considered in the book.   The second article by Berestovskij and Nikolaev is devoted to the theory of metric spaces whose curvature lies between two giyen constants.The main result iS that these spaces are in fact Riemannian. This result has important applications in global Riemannian geometry.   Both parts cover topics which have not yet been treated in monograph form.Hence the book will be immensely useful to graduate students and researchers in geometry,in particular Riemannian geometry.

书籍目录

Chapter
1.Preliminary
Information 1.Introduction  1.1.General
Information
about
the
Subject
of
Research
and
a
Survey
Of
Results
 
1.2.Some
Notation
and
Terminology 2.The
Concept
of
a
Space
with
Intrinsic
Metric  2.1.The
Concept
of
the
Length
ofa
Parametrized
Curve
2.2.A
Space
with
Intrinsic
Metric.The
Induced
Metric
2.3.The
Concept
of
a
Shortest
Curve
2.4.The
Operation
of
Cutting
of
a
Space
with
Intrinsic
Metric 3.TwO.Dimensional
Manifolds
with
Intrinsic
Metric  3.1.Definition.Triangulation
of
a
Manifold
3.2.Pasting
of
Two.Dimensional
Manifolds
with
Intrinsic
Metric
3.3.Cutting
of
Manifolds
3.4.A
Side—Of
a
Simple
Arc
in
a
Two-Dimensional
Manifold 4.Two.Dimensional
Riemannian
Geometry
4.1.Differentiable
Two.Dimensional
Manifolds
4.2.The
Concept
of
a
Two.Dimensional
Riemannian
Manifold
4.3.The
Curvature
of
a
Curve
in
a
Riemannian
Manifold.
Integral
Curvature.The
Gauss-Bonnet
Formula.
4.4.Isothermal
Coordinates
in
Two-Dimensional
Riemannian
Manifolds
of
Bounded
Curvature §5.Manifolds
with
Polyhedral
Metric. 
5.1.Cone
and
Angular
Domain 
5.2
Definition
of
a
Manifold
with
Polyhedral
Metric 
5.3
Curvature
of
a
Set
on
a
Polyhedron.Turn
of
the
Boundary.
The
Gauss-Bonnet
Theorem.. 
5.4.A
Turn
of
a
Polygonal
Line
on
a
Polyhedron 
5.5.Characterization
of
the
Intrinsic
Geometry
of
Convex
Polyhedra
5.6
An
Extremal
Property
of
a
Convex
Cone.The
Method
of
Cutting
and
Pasting
as
a
Means
of
Solving
Extremal
Problems
for
Polyhedra
 
5.7.The
Concept
ofa
K.Polyhedron.Chapter
2.Different
Ways
of
Defining
Two.Dimensional
Manifolds
of
Bounded
Curvature §6.Axioms
of
a
Two-Dimensional
Manifold
of
Bounded
Curvature.
Characterization
of
such
Manifolds
by
Means
of
Approximation
by
Polyhedra
 
6.1.Axioms
of
a
Two—Dimensional
Manifold
of
Bounded
Curvature
 
6.2.Theorems
on
the
Approximation
of
Two.Dimensional
Manifolds
of
Bounded
Curvature
by
Manifolds
with
Polyhedral
and
Riemannian
Metric
 
6.3.Proof
of
the
First
Theorem
on
Approximation
 
6.4.Proof
of
Lemma
6.3.1
 
6.5.Proof
of
the
Second
Theorem
on
Approximation §7.Analytic
Characterization
of
Two—Dimensional
Manifolds
of
Bounded
Curvature
 
7.1.Theorems
on
Isothermal
Coordinates
in
a
Two.Dimensional
Manifold
of
Bounded
Curvature
 
7.2.Some
Information
about
Curves
on
a
Plane
and
in
a
Riemannian
manifold 
7.3.Proofs
ofTheorems
7.1.1,7.1.2,7.1.3
 
7.4.On
the
Proof
ofTheorem
7.3.1.Chapter
3.Basic
Facts
of
the
Theory
of
Manifolds
of
Bounded
Curvature §8.Basic
Results
of
the
Theory
of
Two.Dimensional
Manifolds
of
Bounded
Curvature
 
8.1.A
Turn
ofa
Curve
and
the
Integral
Curvature
ofa
Set.
 
8.2.A
Theorem
on
the
Contraction
of
a
Cone.Angle
between
Curves.Comparison
Theorems
 
8.3.A
Theorem
on
Pasting
Together
Two.Dimensional
Manifolds
of
Bounded
Curvature.……References

图书封面

图书标签Tags

Mathematics


    几何IV下载



用户评论 (总计21条)

 
 

  •     几何IV 非正规黎曼几何是科学出版社的国外数学名著中的一部,学术水平高,印刷装帧纸张都是一流,堪称精品.
  •     书质量没问题,对数字真不敏感
  •     真可惜,俄版比国里的好一些哦
  •     KEN***H H.ROSEN 的经典著作《离散数学及其应用》也买了,还算便宜。
  •     书看起来质量很不错。, 要慢慢琢磨才行
  •     好喜欢,深入理解还是需要念其他英文书
  •     微积分和数学分析引论,使用还是很方便的。
  •     希望有用!,文字表述浅显易懂
  •     影印版的内容还不错,可惜基础部分没有
  •     终于找到了,但孩子特别喜欢看。
  •     那就买来看一下!院士的书还是值得读的!,本书描述了数论这一古老学科的发展史
  •     给儿子买的,不过内容不错
  •     印刷、纸张等等都很好。,书编的很好
  •     打发无聊时间,上当受骗了
  •      今后送给喜爱数学的孩子。,值得阅读。
  •     定先生乃此中高手,读后收获颇丰。
  •     著名的作者,什么时候有下册
  •     神书不解释,太棒了
  •     很好的代数几何书,不错哈!
  •     但还是能领略其思想精华!
    好书!,货品良好
  •     娓娓道来,比较生动
 

自然科学类PDF下载,数学PDF下载。 PPT下载网 

PPT下载网 @ 2017